Сверхдержавы искусственного интеллекта

Кай-Фу Ли — один из известнейших экспертов в области искусственного интеллекта. За долгую и блестящую карьеру он узнал изнутри, как работают Кремниевая долина США и IT-отрасль Китая, поэтому с уверенностью делает прогнозы о том, кто и почему победит в гонке ИИ. Но эта победа может обернуться безработицей и невиданным социальным расслоением по всему миру. Катастрофа почти неизбежна, но после серьезнейшего личного кризиса Кай-Фу Ли увидел неожиданный выход.

Здесь отрывок из книги «Сверхдержавы искусственного интеллекта».

ПОВЕСТЬ О ДВУХ ГОСУДАРСТВАХ

Еще в 1999 году китайские исследователи ИИ блуждали во тьме в самом буквальном смысле этих слов. Сейчас я объясню, что имею в виду. В том году я посетил Научно-технический университет Китая с лекцией о нашей работе по распознаванию речи и изображений в Microsoft Research. Университет был одним из лучших технических вузов в стране, но находился в южном городе Хэфэй, в далекой от Пекина провинции. Студенты начали занимать места в аудитории еще ночью, а во время лекции те, кому мест не досталось, приникали к окнам, надеясь хоть что-то услышать. Их интерес был настолько велик, что в конце концов я попросил организаторов разрешить им стоять в проходах и даже сидеть на сцене вокруг меня.

Они внимательно слушали, как я рассказывал об основах распознавания и синтеза речи, трехмерной графики и компьютерного зрения, делали заметки и засыпали меня вопросами. Китай, бесспорно, отставал от Соединенных Штатов более чем на десятилетие в исследованиях ИИ, но те студенты впитывали знания как губки. Волнение в комнате ощущалось на физическом уровне. Лекция затянулась, и когда я вышел из аудитории и направился к главным воротам университета, уже стемнело. Корпуса общежития тянулись по обе стороны улицы, но в кампусе царила тишина, и вокруг никого не было. И внезапно все изменилось. Как будто по команде, из общежитий полился поток студентов. Я остановился, с удивлением наблюдая картину, похожую на замедленную съемку эвакуации по пожарной тревоге. Происходившую в абсолютной тишине. Только когда студенты уселись на бордюр вдоль тротуара и открыли свои учебники, я понял, что происходило: по правилам общежития свет в помещениях выключался в 11 часов, и студенты выходили на улицу, чтобы продолжить заниматься под уличными фонарями. В ту минуту в их мягком желтом сиянии я увидел перед собой сотни молодых, ярких и талантливых инженеров Китая. Тогда я не мог, конечно, знать, что будущий основатель одной из самых успешных китайских компаний, построенных на ИИ, тоже был там и пытался использовать для занятий два часа, оставшихся до наступления полной темноты. Учебники, которые читали эти студенты, были по большей части устаревшими и плохо переведенными, но будущие молодые ученые старались выжать из них все до капли. Доступ в интернет в вузах оставался редкостью, а обучение за рубежом было возможно только в том случае, если его оплачивала какая-то организация. Лишь страницы учебников с замусоленными уголками и отдельные лекции изредка приглашаемых ученых были их окошком в мир, через которое они могли получить сведения о передовых исследованиях ИИ. Как же все изменилось с тех пор!

СТРОИТЕЛЬНЫЙ МАТЕРИАЛ ДЛЯ СВЕРХДЕРЖАВЫ ИИ

Как я уже упоминал, для строительства сверхдержавы ИИ нужны четыре основные составляющие: изобилие данных, упорные предприниматели, высококвалифицированные исследователи ИИ и благоприятная политическая обстановка. Мы уже видели, как экосистема гладиаторских стартапов Китая подготовила поколение самых искушенных предпринимателей в мире и как альтернативная интернет-вселенная Китая породила богатейшую в мире экосистему данных. В этой главе дается оценка потенциала США и Китая в том, что касается государственной поддержки и экспертных знаний по ИИ. Я верю, что в эпоху внедрения ИИ уровень Кремниевой долины вполне возможно будет превзойти, пусть это и непросто. Используя всю мощь государственной поддержки и преимущества прагматического подхода, Китай проложит себе путь к скорейшему внедрению технологий, меняющих правила игры на рынке. Поскольку искусственный интеллект проникает в экономику все глубже, инженеров, работающих с ним, будет все больше. На этом этапе количество станет важнее качества. Чтобы экономика совершила рывок благодаря технологиям ИИ, недостаточно горстки элитных ученых, готовых открывать новые горизонты.

Понадобится армия блестяще обученных инженеров, которые объединятся с предпринимателями, чтобы внедрить результаты уже сделанных открытий. Китай готовит именно такую армию. За два десятилетия, прошедших со дня лекции в Хэфэе, сообщество специалистов по ИИ в Китае в значительной степени сократило разрыв с аналогичным сообществом в США. Хотя Америка все еще обходит все страны по числу исследователей-суперзвезд, китайские компании и научно-исследовательские организации пополняют свои ряды хорошо образованными инженерами, которым предстоит вступить в эпоху внедрения ИИ. Страна получила этих специалистов благодаря той жажде знаний, что я видел у них в Хэфэе. Китайские студенты, изучающие ИИ, больше не портят себе глаза, читая в темноте устаревшие учебники. Они пользуются открытой исследовательской культурой ИИ, способствующей усвоению знаний из первоисточника в режиме реального времени.

Теперь благодаря интернету они могут получить доступ к последним академическим публикациям, обсудить в группах WeChat подходы ведущих исследователей ИИ и посмотреть лекции на экранах своих смартфонов. Все это со временем позволит технологическому сообществу Китая догнать элиту интеллектуальных лидеров — ведь молодое поколение китайских исследователей-энтузиастов уже сегодня вносит свой вклад в науку. Это дает китайским стартапам возможность использовать передовые алгоритмы с открытым кодом при создании продуктов ИИ, имеющих практическое применение: автономных беспилотных летательных аппаратов, систем оплаты через распознавание лица и интеллектуальной бытовой техники. Эти стартапы сейчас борются за кусочек рынка ИИ, где доминируют несколько крупных игроков — так называемые Семь гигантов эпохи ИИ: Google, Facebook, Amazon, Microsoft, Baidu, Alibaba и Tencent. Эти компании-гиганты, четыре из которых находятся в США, а три — в Китае, ведут свою смелую игру, стремясь удержать доминирующие позиции в экономике ИИ. У них есть миллиарды долларов и головокружительные запасы данных — этого достаточно, чтобы прибрать к рукам самых талантливых специалистов. Компании-гиганты ведут работу по созданию «энергосистемы» эпохи ИИ — частных вычислительных сетей для распространения машинного обучения во всех областях экономики, пытаясь стать «базовой инфраструктурой».

Это явление вызывает беспокойство у тех, кто выступает за открытую экосистему ИИ, и чревато отставанием Китая в погоне за званием сверхдержавы ИИ. Но частные компании не смогут полностью реализовать экономический потенциал ИИ без прямой поддержки государства. Как вы помните, вскоре после того, как Кэ Цзе проиграл матч с AlphaGo, Центральное правительство Китая выпустило широкомасштабный план для выхода страны на лидерские позиции в сфере ИИ. Как и кампания под лозунгом «Массовые инновации — массовому предпринимательству!», план должен был привести к мощному технологическому рывку за счет щедрых субсидий для ИИ-стартапов и государственного заказа. В политике Китая произошли реальные сдвиги. Честолюбивые мэры по всей стране начали прилагать все усилия к тому, чтобы превратить свои города в площадки для реализации возможностей ИИ. Они стали прокладывать маршруты для грузовиков без водителя, устанавливать системы распознавания лиц на общественном транспорте и подключать транспортные сети к «городскому мозгу» для оптимизации пассажирских потоков.

За этими действиями кроется основное различие в американской и китайской политической культуре: в то время как жесткая американская политическая система беспощадно наказывает за ошибки или нерациональное использование средств, утилитарный подход Китая вознаграждает за щедрые инвестиции и участие во внедрении новой технологии. Ни одна система не может претендовать на объективное превосходство, ведь уровень свободы творчества и технических достижений в Соединенных Штатах до сих пор не имеет себе равных. Но я считаю, что в эпоху внедрения ИИ китайский подход более эффективен, а генерирование большего количества данных поможет создать задел для дальнейшего роста.

Таков эффект единого порыва, в основе которого лежит магия цифровых данных, упорство предпринимателей, политическая воля и полученные за счет самоотверженного труда знания. Поэтому, чтобы понять, на каком этапе сейчас находятся обе сверхдержавы ИИ, мы должны сначала выяснить, откуда берутся эти знания.

НОБЕЛЕВСКИЕ ЛАУРЕАТЫ И БЕЗЫМЯННЫЕ РЕМЕСЛЕННИКИ

Ступив на палубу английского почтового судна Franconia II в 1938 году, Энрико Ферми изменил мировой баланс сил. Он только что получил Нобелевскую премию по физике в Стокгольме, но вместо того чтобы вернуться домой в Италию, где правил Бенито Муссолини, Ферми со своей семьей отплыл в Нью-Йорк. Они отправились в Америку, так как их не устраивали расистские законы Италии: евреям или африканцам запрещалось иметь более одной работы и вступать в брак с итальянцами.

Жена Ферми, Лаура, была еврейкой, и он решил перевезти семью на другой конец света, вместо того чтобы терпеть антисемитизм, охвативший Европу. Это был очень личный поступок, но он привел к потрясающим последствиям для всего мира. После прибытия в США Ферми узнал об открытии учеными нацистской Германии ядерного распада и быстро приступил к изучению этого явления. Ему удалось получить первую в мире цепную ядерную реакцию в реакторе, прямо под трибунами университетского стадиона в Чикаго.

Сверхсекретный Манхэттенский проект приобрел невиданный размах и привел к созданию ядерного оружия. Сделанные тогда бомбы положили конец Второй мировой войне в Тихом океане и заложили основу для ядерного миропорядка. Ферми и Манхэттенский проект распахнули перед человечеством дверь в новую эпоху открытий. В ядерной физике 1930-е и 1940-е годы были эпохой фундаментальных прорывов, и один Энрико Ферми стоил тысячи менее блестящих физиков. Американское лидерство в значительной степени обеспечивали прибывающие в США гении вроде Ферми: мужчины и женщины, способные единолично склонить чашу весов научной мощи в пользу своего государства.

Но не каждая технологическая революция следует этой схеме. Часто после масштабного прорыва основной объем работы из рук элитных исследователей переходит к армии инженеров-ремесленников, обладающих достаточным опытом для использования той или иной технологии при решении различных практических задач. Это особенно верно для тех случаев, когда результат прорыва находит применение в повседневной жизни, а не остается в стенах нескольких военных лабораторий.

Примером такого процесса является массовая электрификация. Вслед за открытиями Томаса Эдисона в области электричества началось быстрое внедрение в жизнь различных изобретений на их основе. С электричеством экспериментировали тысячи инженеров: они искали пути, чтобы привести новые приборы в действие и реорганизовать производственные процессы. Им не нужно было совершать великие открытия, как Эдисону. Они просто должны были знать, как работает электричество, и учитывать это при создании полезной и эффективной техники. Наша нынешняя фаза реализации ИИ соответствует этой последней модели. Постоянный поток сообщений о новейших достижениях в области ИИ дает нам ошибочное ощущение, что мы живем в эпоху открытий — время, подобное тому, когда Энрико Ферми определил мировой баланс сил. На самом деле мы наблюдаем за последствиями одного фундаментального прорыва — открытия глубокого обучения и связанных с ним методов, применимых к решению множества разных проблем.

Теперь процесс требует участия хорошо обученных научных работников — мастеров-ремесленников нашей эпохи. Сегодня эти мастера используют сверхчеловеческие способности ИИ в области распознавания образов для оформления кредитов, управления автомобилями, перевода текста, игры в го и поддержки вашего голосового ассистента Amazon Alexa. Пионеры глубокого обучения — Джеффри Хинтон, Ян Лекун, Джошуа Бенжио и другие — уже стали Энрико Ферми эпохи ИИ. Они продолжают раздвигать границы возможностей искусственного интеллекта. Вероятно, они сделают еще не одно открытие, способное изменить правила игры и перевернуть сложившийся порядок в мире технологий. Но в то же время основную часть работы по применению достижений ИИ делают сегодня мастера-ремесленники.

ОБМЕН ДОСТИЖЕНИЯМИ

Нынешняя технологическая революция дала ученым и техническим специалистам важное преимущество — мгновенный доступ к последним работам ведущих новаторов в любой области. Во время промышленной революции в Англии закрытые границы государств и языковые барьеры мешали распространению важных достижений. Однако культурная открытость Америки и более свободные законы об интеллектуальной собственности помогли некоторым серьезным изобретениям просочиться туда. Тем не менее между новатором и практикомимитатором всегда оставалась существенная дистанция. В наши дни все обстоит по-другому.

Когда китайских предпринимателей спрашивают, насколько Китай отстает от Кремниевой долины в исследовании искусственного интеллекта, некоторые из них в шутку отвечают: «На 16 часов» — такова разница во времени между Калифорнией и Пекином. Америка может быть домом для лучших исследователей, но большая часть их достижений и гипотез мгновенно становится доступна любому, у кого есть подключение к интернету и основные знания об ИИ. Такому обмену информацией способствуют две определяющие черты сообщества исследователей ИИ: открытость и быстрота коммуникации. Исследователи искусственного интеллекта, как правило, публикуют свои алгоритмы, данные и результаты работы в открытом доступе. Они делают это, потому что их объединяет общая цель, а также потому что стремятся достичь объективных показателей в научном соревновании.

Во многих иных науках эксперименты нельзя точно воспроизвести в другой лаборатории: мельчайшие изменения в методе или окружающей среде могут значительно повлиять на результаты. Но эксперименты с ИИ полностью воспроизводимы, а алгоритмы являются напрямую сравниваемыми. Единственное требование — обучение и тестирование этих алгоритмов должно проводиться на идентичных наборах данных. Международные конкурсы часто требуют от соревнующихся команд, занимающихся компьютерным зрением или распознаванием речи, предоставлять свои работы для разбора другим исследователям.

Скорость совершенствования ИИ также заставляет исследователей оперативно делиться своими результатами. Многие ученые, работающие с ИИ, не пытаются совершить фундаментальные прорывы, сравнимые с открытием глубокого обучения, — они занимаются тем, что постоянно дорабатывают самые лучшие алгоритмы. Эта тонкая настройка регулярно помогает устанавливать новые рекорды точности при решении задач в области распознавания речи или визуальной идентификации. Когда исследователи соревнуются между собой, победителя определяют именно такие рекорды, а не успех разработанных продуктов или экономические результаты. И когда ученый устанавливает новый рекорд, он, конечно, хочет известности и признания. Но в современной науке все происходит очень быстро, и многие исследователи опасаются, что, пока они будут ждать публикации в журнале, их рекорд превзойдут и он останется незарегистрированным.

Поэтому они стремятся к скорейшей публикации и выбирают для нее такие сайты, как www. arxiv. org — онлайн-хранилище научных статей. Сайт позволяет исследователям мгновенно зафиксировать свои достижения с указанием времени и места. В мире, изменившемся после победы AlphaGo, китайские студенты, исследователи и инженеры стали одними из самых жадных читателей arxiv. org. Они тщательно просматривают этот сайт в поисках новых методов, впитывая все, что могут предложить самые выдающиеся исследователи в мире. Наряду с академическими публикациями китайские студенты, изучающие ИИ, также отслеживают, переводят и снабжают субтитрами лекции ведущих деятелей науки в этой области, таких как Ян Лекун, Себастьян Трун из Стэнфорда и Эндрю Ын. После десятилетий, проведенных за чтением устаревших учебников в полу тьме, эти будущие ученые упиваются свободным доступом к работам, отражающим глобальные научные тенденции.

Сообщество ИИ Китая образует гигантские группы и создает мультимедийные платформы в WeChat для подробного обсуждения всего самого нового в области ИИ. Тринадцать новых медиакомпаний, появившихся только для того, чтобы освещать этот сектор науки, предлагают своей аудитории отраслевые новости, экспертный анализ и открытый диалог. Эти информационные агентства могут похвастаться более чем миллионом зарегистрированных пользователей, а половина из них пользуется венчурным финансированием, что поднимает оценку каждого такого агентства выше 10 млн долларов. Я сам участвую в академических дискуссиях и вхожу в число пятисот членов специальной группы в WeChat, которая собирается каждую неделю, чтобы обсудить свежие публикации об исследованиях в области ИИ. Чат-группа гудит сотнями сообщений в день: серьезные вопросы по научной статье, обсуждаемой на этой неделе, скриншоты последних достижений участников в работе над алгоритмами и, конечно же, множество эмодзи. Но китайские практики не просто пассивно приобщаются к мудрости западного мира. Они теперь и сами вносят свой вклад в экосистему, и размер этого вклада стремительно растет.

© Times of Ukraine

Один комментарий

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *